Exercise 2.6.2

(No periodic solutions to $\dot{x}=f(x))$ Here's an analytic proof that periodic solutions are impossible for a vector field on a line. Suppose on the contrary that $x(t)$ is a nontrivial periodic solution, i.e., $x(t)=x(t+T)$ for some $T>0$, and $x(t) \neq x(t+s)$ for all $0<s<T$. Derive a contradiction by considering $\int_{t}^{t+T} f(x) \frac{d x}{d t} d t$.

Solution

The aim is to show that there are no periodic solutions to

$$
\dot{x}=f(x) .
$$

Suppose that there is a periodic solution to this equation: $x=x(t) \neq$ constant, where

$$
x(t)=x(t+T), \quad T>0
$$

for all t, and T is the smallest time for which $x(t)$ repeats itself. Consider

$$
\begin{aligned}
I & =\int_{t_{0}}^{t_{0}+T} f(x) \frac{d x}{d t} d t \\
& =\int_{t_{0}}^{t_{0}+T} \dot{x} \frac{d x}{d t} d t \\
& =\int_{t_{0}}^{t_{0}+T} \frac{d x}{d t} \frac{d x}{d t} d t \\
& =\int_{t_{0}}^{t_{0}+T}\left(\frac{d x}{d t}\right)^{2} d t
\end{aligned}
$$

which is a positive number since the integrand is nonnegative and $x(t) \neq$ constant. Find I again by integrating by parts.

$$
\begin{aligned}
I & =\int_{t_{0}}^{t_{0}+T} f[x(t)] \frac{d x}{d t} d t \\
& =\left.f[x(t)] x(t)\right|_{t_{0}} ^{t_{0}+T}-\int_{t_{0}}^{t_{0}+T} \frac{d}{d t}\{f[x(t)]\} x(t) d t \\
& =f\left[x\left(t_{0}+T\right)\right] x\left(t_{0}+T\right)-f\left[x\left(t_{0}\right)\right] x\left(t_{0}\right)-\int_{t_{0}}^{t_{0}+T} \frac{d f}{d x} \frac{d x}{d t} x(t) d t \\
& =f\left[x\left(t_{0}\right)\right] x\left(t_{0}\right)-f\left[x\left(t_{0}\right)\right] x\left(t_{0}\right)-\int_{t_{0}}^{t_{0}+T} \frac{d f}{d x}\left\{\frac{1}{2} \frac{d}{d t}[x(t)]^{2}\right\} d t \\
& =-\frac{1}{2} \int_{t_{0}}^{t_{0}+T} \frac{d f}{d x} \frac{d}{d t}[x(t)]^{2} d t \\
& =-\frac{1}{2} \int_{t_{0}}^{t_{0}+T} \frac{d}{d t} f\left\{[x(t)]^{2}\right\} d t
\end{aligned}
$$

Evaluate the integral.

$$
\begin{aligned}
I & =-\left.\frac{1}{2} f\left\{[x(t)]^{2}\right\}\right|_{t_{0}} ^{t_{0}+T} \\
& =-\frac{1}{2} f\left\{\left[x\left(t_{0}+T\right)\right]^{2}\right\}+\frac{1}{2} f\left\{\left[x\left(t_{0}\right)\right]^{2}\right\} \\
& =-\frac{1}{2} f\left\{\left[x\left(t_{0}\right)\right]^{2}\right\}+\frac{1}{2} f\left\{\left[x\left(t_{0}\right)\right]^{2}\right\} \\
& =0
\end{aligned}
$$

This is a contradiction because I is supposed to be a positive number. The assumption made initially must then be false. Therefore, there are no periodic solutions to $\dot{x}=f(x)$.

